

SYDNEY BOYS HIGH

MOORE PARK, SURRY HILLS

2002 HIGHER SCHOOL CERTIFICATE JUNE EXAMINATION

Mathematics Extension 2

General Instructions

- Reading time 5 minutes
- Working time 2 hours
- Write using black or blue pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks — 100

- Attempt questions 1—6
- All questions are not of equal value, the mark value is shown beside each part.

Examiner: E.Choy

Note: This is an assessment task only and does not necessarily reflect the content or

format of the Higher School Certificate.

Total marks - 100 Attempt Questions 1-6

All questions are not of equal value

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Marks

Question 1 (20 marks) Use a SEPARATE writing booklet.

(a) Find
$$\int \frac{1}{x \ln x} dx$$
.

(b) Find
$$\int_0^{\pi/3} \sin^3 x \cos x \, dx.$$

(c) By completing the square, find
$$\int \frac{dx}{\sqrt{x^2+4x+8}}$$
.

(d) Use integration by parts to evaluate
$$\int_0^{\frac{1}{2}} \cos^{-1}x \, dx$$
.

(e) (i) Use partial fractions to show that:
$$\int_0^1 \frac{dx}{(x+2)(2x+1)} = \frac{1}{3} \ln 2.$$

(ii) Hence evaluate
$$\int_0^{\pi/2} \frac{3}{4+5\sin x} dx.$$
 3

(f) Show that
$$f(x) = x^8 \sin x$$
 is an odd function.

Hence evaluate
$$\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} x^8 \sin x \, dx.$$

Marks

Question 2 (20 marks) Use a SEPARATE writing booklet.

(a) (i) Simplify
$$i^{2002}$$
.

2

(ii) Solve
$$2z^2+(3+i)z+2=0$$
.

2

(b) On separate Argand diagrams, shade the regions:

(i)
$$-2 < Im(z) \le 5$$

2

(ii)
$$|z| < 6$$

2

(iii)
$$2 < z + \overline{z} < 10$$

2

(iv)
$$arg(z^2) = \frac{2\pi}{3}$$
.

2

(c) In how many ways can 10 women be directed into two groups of 3 and 7 respectively?

2

(d) If
$$\alpha$$
, β , γ are the roots of the equation $x^3-2x^2+2x-2=0$, find the value of $\alpha^2+\beta^2+\gamma^2$. Explain why only one root of the equation is real.

3

(e) A certain polynomial, P(x), is an odd polynomial of degree 5. It is given that P(1) = P(2) = 0 and P(3) = 240. Find P(x).

Question 3 (15 marks) Use a SEPARATE writing booklet.

(a) Solve, graphically or otherwise,

4

4

- $|x^2-2x-3| < 3x-3.$
- (b) On the same set of axes, sketch and label the graphs with equations $y = x(x-3)^2$ and $y^2 = x(x-3)^2$. Clearly indicate turning points and any other critical points.
- (c) The diagram below shows the graph of a function, y = f(x). There is an horizontal asymptote y = 2 as shown. For your convenience this graph is reproduced on a separate sheet. Using the given graphs as a guide, sketch the required graphs on the separate sheet.

Insert the sheet into your examination booklet for Question 3. $y \downarrow$

- (i) y = f(x+2),
- (ii) y = |f(x)|,
- (iii) |y| = f(x),
- (iv) $y = \frac{1}{f(x)}$,
- (v) $y = \ln f(x)$.

Question 4 (15 marks) Use a SEPARATE writing booklet.

(a) Use the substitution
$$x = \sin^2 \theta$$
 to evaluate $\int_0^{\frac{\pi}{2}} \frac{\sqrt{x}}{(1-x)^{\frac{3}{2}}} dx$.

(b) (i) If
$$f(x) = f(a-x)$$
, prove that
$$\int_0^a x f(x) dx = \frac{a}{2} \int_0^a f(x) dx.$$

(ii) Hence or otherwise, prove that
$$\int_0^{\pi} g(x) dx = \frac{\pi^2}{4},$$
 if
$$g(x) = \frac{x \sin x}{1 + \cos^2 x}.$$

(c) (i) Given
$$I_n = \int_0^1 x^n e^{2x} dx$$
, where n is a positive integer, use integration by parts to show that $I_n = \frac{1}{2} (e^2 - n I_{n-1})$.

(ii) Hence evaluate
$$\int_0^1 x^4 e^{2x} dx$$
.

Question 5 (15 marks) Use a SEPARATE writing booklet.

(a)

The sketch above shows the graphs of $y = x^2 - b$ and $y = \frac{k}{x}$, where b > 0 and k > 0. The hyperbola touches the parabola at the point A and cuts it at the point B.

(i) Show that the *x*-coordinates of the points of intersection of the hyperbola and the parabola are the roots of the equation $x^3 - bx - k = 0$.

2

(ii) Explain why this equation has a double root.

2

(iii) Show that $4b^3 = 27k^2$.

one red card?

3

(iv) If b = 12, find the coordinates of A and B.

3

- (b) In a hat are 10 red, 10 blue, and 10 yellow cards. Each colour group is numbered from 1 to 10. Four cards are chosen at random from the hat.
- 2
- (ii) Find the probability that a group of four cards chosen at random contains at least one of each colour, given that the group contains at least one red card.

3

How many groups of four cards can be chosen which contain at least

3

2

Question 6 (15 marks) Use a SEPARATE writing booklet.

A particle of unit mass, initially at rest at the origin, is moving along a straight line. The particle is attracted by two objects that are to the right of the origin, one at position A and the other at B. The magnitude of the force due to the object at A is equal to the distance of the particle from A while the magnitude of the force due to B is equal to the square of the distance of the particle from B. Position A is 3 metres from the origin and B is 6 metres from the origin.

(i) Show that the acceleration of the particle for $0 \le x \le 3$ and also for $3 \le x \le 6$ is given by:

$$\ddot{x} = x^2 - 13x + 39.$$

- (ii) Find an expression for v^2 , the square of the velocity at position x where $0 \le x \le 6$.
- (iii) Explain why the particle never comes to rest between the origin and B.
- (iv) Show that the speed of the particle when it first arrives at B is 12 m/s.
- (v) Find an expression for the acceleration of the particle when it is beyond B.
- (vi) Find an expression for the speed of the particle when it is beyond *B* and explain why the particle comes to rest somewhere between 11 and 12 metres from the origin. (You do not have to find the exact position.)

End of paper

STANDARD INTEGRALS

$$\int x^{n} dx = \frac{1}{n+1} x^{n+1}, \quad n \neq -1; \quad x \neq 0, \text{ if } n < 0$$

$$\int \frac{1}{x} dx = \ln x, \quad x > 0$$

$$\int e^{ax} dx = \frac{1}{a} e^{ax}, \quad a \neq 0$$

$$\int \cos ax dx = \frac{1}{a} \sin ax, \quad a \neq 0$$

$$\int \sin ax dx = -\frac{1}{a} \cos ax, \quad a \neq 0$$

$$\int \sec^{2} ax dx = \frac{1}{a} \tan ax, \quad a \neq 0$$

$$\int \sec ax \tan ax dx = \frac{1}{a} \sec ax, \quad a \neq 0$$

$$\int \frac{1}{a^{2} + x^{2}} dx = \frac{1}{a} \tan^{-1} \frac{x}{a}, \quad a \neq 0$$

$$\int \frac{1}{\sqrt{a^{2} - a^{2}}} dx = \sin^{-1} \frac{x}{a}, \quad a1 > 0, \quad -a < x < a$$

$$\int \frac{1}{\sqrt{x^{2} - a^{2}}} dx = \ln(x + \sqrt{x^{2} - a^{2}}), \quad x > a > 0$$

$$\int \frac{1}{\sqrt{x^{2} + a^{2}}} dx = \ln(x + \sqrt{x^{2} + a^{2}})$$

NOTE: $\ln x = \log_e x$, x > 0

Name ______

GRAPHS FOR QUESTION 3

The diagrams on this sheet each show a graph of the function y = f(x), as shown on page 4 of your question booklet. Using the given graphs as a guide, sketch the required graphs.

Insert this sheet into your answer booklet for Question 3.

Marks

(vii) Sketch y = f(x+2),

2

(viii) Sketch y = |f(x)|.

Marks

2

(ix) Sketch |y| = f(x).

(x) Sketch $y = \frac{1}{f(x)}$.

(xi) Sketch $y = \ln f(x)$.

2

2

2002
HIGHER SCHOOL CERTIFICATE
ASSESSMENT TASK # 2

Mathematics Extension 2

Sample Solutions

2002 Ext 2 Task # 2

(1) (a)
$$\int \frac{1}{x \ln x} dx = \int \frac{1}{x} dx \qquad (1e + u = \ln x)$$
$$= \ln (\ln x) + C$$

(b)
$$\int_{0}^{\pi/3} \sin^{3}x \cos x \, dx$$

$$\int_{1}^{\infty} 1et \quad u = \sin x \implies du = \cos x \, dx$$

$$x = 0 \implies u = 0$$

$$x = \pi/3 \implies u = \frac{\sqrt{3}}{2}$$

$$=\int_{0}^{\sqrt{3}/2} u^{3} du$$

$$= \frac{1}{4} u^4 \int_0^{\sqrt{3}/2} = \frac{1}{4} \left[\left(\frac{\sqrt{3}}{2} \right)^4 - 0 \right]$$

$$=\frac{1}{4} \times \frac{9}{16} = \frac{9}{64}$$

Table of Integrals

(c)
$$\int \frac{dx}{\sqrt{x^2 + 4x + 8}} = \int \frac{dx}{\sqrt{(x + y)^2 + 4}}$$

$$\int \frac{dx}{\sqrt{x^2 + \alpha^2}} = \ln (x + \sqrt{x^2 + \alpha^2})$$

(d)
$$\int_{0}^{\frac{1}{2}} (0s^{-1}x) dx = \int_{0}^{\frac{1}{2}} 1 \times (0s^{-1}x) dx$$

= $x (0s^{-1}x) \int_{0}^{\frac{1}{2}} - \int_{0}^{\frac{1}{2}} x \times \frac{-1}{\sqrt{1-x^{2}}} dx$

$$= \frac{1}{2} \cos^{-1}(\frac{1}{2}) - \int_{0}^{\frac{1}{2}} \frac{-x}{\sqrt{1-x^{2}}} dx = \frac{1}{2} \times \frac{11}{3} - \frac{1}{2} \int_{0}^{\frac{1}{2}} \frac{-2x}{\sqrt{1-x^{2}}} dx$$

$$= \frac{\pi}{6} - \frac{1}{2} \times 2 \sqrt{1 - \chi^{2}} \right]_{0}^{\frac{1}{2}}$$

$$= \frac{\pi}{6} - \left(\sqrt{1 - \frac{1}{4}} - \sqrt{1}\right)$$

$$= \frac{\pi}{6} + 1 - \frac{\sqrt{3}}{2}$$

(e) (1)
$$\frac{1}{(x+2)(2x+1)} = \frac{A}{x+2}$$
 $\frac{B}{(x+2)(2x+1)}$ $\frac{1}{(x+2)(2x+1)} = \frac{A}{(x+2)(2x+1)} + \frac{B}{(x+2)}$

$$x = \frac{1}{2} \Rightarrow 1 = 0 + \frac{B \times \frac{\pi}{2}}{2}$$

$$\therefore A + 2\beta = 1 \Rightarrow A + \frac{4}{3} = 1$$

$$\therefore A = -\frac{1}{3}$$

$$\int_{0}^{1} \frac{dx}{(x+2)(2x+1)} = \int_{0}^{1} \frac{1}{x+2} + \frac{2}{2x+1} dx$$

$$= -\frac{1}{3} \int_{0}^{1} \frac{1}{(x+2)(2x+1)} dx = -\frac{1}{3} \ln \left(\frac{x+2}{2x+1}\right) \int_{0}^{1} dx$$

$$= -\frac{1}{3} \left[\ln \left(\frac{3}{3} \right) - \ln 2 \right]$$

$$= \frac{1}{3} \ln 2$$
(ii) $\int_{0}^{10/2} \frac{3}{4+55 \text{max}} dx$

$$= \frac{1}{3} \int_{0}^{1} \frac{1}{(x+2)(2x+1)} dx$$

$$= \frac{1}{3} \ln 2$$

$$= \frac{$$

(2) (a) (i)
$$i^{2002} = (i^2)^{1001}$$

$$= (-1)^{1001}$$

$$= -1$$

$$\frac{2}{2} = \frac{-(3+i) \pm \sqrt{(3+i)^2 - 4 + 2 \times 2}}{4}$$

$$= \frac{-(3+i) \pm \sqrt{8 + 6i - 16}}{4}$$

$$= \frac{-3+i \pm \sqrt{6i - 8}}{4} \qquad (x+iy)^2 = -8 + 6i$$

$$= \frac{-3-i \pm (1+3i)}{4} \qquad 2xy = 6$$

$$= \frac{-2+2i}{4}, \frac{-4-4i}{4} \qquad 1-9=-8$$

$$\therefore [x=1, y=3]$$

$$= \frac{-1+i}{2}, -(1+i)$$

(b) (i) -2 < 1m(z) = 5

(ii) 121 <6

(iii) 2 < 2+2 < 10

.. 2 < 2 Re Z < 10

:. 1< Re 2 < 5

The two solutions because of z^2

	don't
(2) (c) $\binom{10}{3}$ or $\binom{10}{7}$	(e) P(x) is odd polynomial deg 5
(3)	$s_0 p(x) = ax^5 + bx^3 + cx$
	P(1) = P(2) = 0 and $P(0) = 0$
(d) $x^3 - 2x^2 + 2x - 2 = 0$	", $P(x) = x(x-1)(x-1) Q(x)$, $deg Q(x) = 2$
«+B+X = 2	1(1)=0 =1 10 0
αβ+αγ+βγ= 2	= (x - x)(x + x)(x - x)(x + x) = (x - x)(x - x)
	P(3) = 240
$(\alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2($	(xβtxft βx) = 3a(4)(2)(5)(1)=240 ⇒ 120a=240
= 4 - 2(2)	$\rightarrow a=2$
= 0	*. P(x)= 2x(x+1)(x-1)(x+2)(x-
sum of squares is zero.	so mon-real root involved
BUT since the co-efficie	nb are real, the non-real vocto
occur in conjugate pairs.	So only one real root
	T ^y 1/
(3) (a) $ x^2 - 1x - 3 < 3x - 3$	
e (x-3)(x+1) < 3(x-1)	
	2 3 5 X
Find points of interrection	
Check -(r - ch s) - y - s	7x -3 = 3x -3/ 2-5x=0 2 <x<5< td=""></x<5<>
$x^2 + x - 6 = 0$	(X-S)=0
	x=5]
$\left[(x+3)(x-2)=0 \right]$	
$\frac{(x+3)(x-2)=0}{(b) y = x(x-3)^{2}}$	
$ \frac{(x+3)(x-2)=0}{(b)} $ $ y = x(x-3)^{2} $ $ = x(x^{2}-6)(+9) $	
$(b) y = x(x-3)^{2}$ $= x(x^{2}-6x+9)$ $= x^{3}-6x^{2}+9x$	
$\begin{cases} \frac{(x+3)(x-2)=0}{(x+3)(x-2)=0} \\ = x(x-3)^{2} \\ = x(x^{2}-6)(x+9) \\ = x^{3}-6x^{2}+9x \\ y^{2}=3x^{2}-12x(x+9) \end{cases}$	72-5
$\begin{cases} (x+3)(x-2)=0 \end{cases}$ (b) $y = x(x-3)^{2}$ $= x(x^{2}-6x+9)$ $= x^{3}-6x^{2}+9x$ $y' = 3x^{2}-12x+9$ $= 3(x^{2}-4x+3)$	72-5
$\begin{cases} \frac{(x+3)(x-2)=0}{(x+3)(x-2)=0} \\ = x(x-3)^{2} \\ = x(x^{2}-6)(x+9) \\ = x^{3}-6x^{2}+9x \\ y^{2}=3x^{2}-12x(x+9) \end{cases}$	72-5

The diagrams on this sheet each show a graph of the function y = f(x), as shown on page 4 your question booklet. Using the given graphs as a guide, sketch the required graphs.

Insert this sheet into your answer booklet for Question 3.

Marl

(vii) Sketch y = f(x+2),

more y-axis 2 units to the right

(viii) Sketch y = |f(x)|.

Marks

(ix) Sketch |y| = f(x).

2

(x) Sketch $y = \frac{1}{f(x)}$.

2

(xi) Sketch $y = \ln f(x)$.

(4)
$$(a) \int_{0}^{\frac{1}{2}} \frac{\sqrt{x}}{(1-x^{2})^{3/2}} dx$$

$$= \int_{0}^{\pi/4} \frac{\sin \theta \cdot 2 \sin \theta \cos \theta d\theta}{(1-\sin^{2}\theta)^{3/2}}$$

$$= \int_{0}^{\pi/4} \frac{2 \sin^{2}\theta \cos \theta}{(\cos^{3}\theta)^{3/2}} d\theta$$

$$= 2 \int_{0}^{\pi/4} (\sec^{2}\theta - 1) d\theta$$

$$= 2 \left[\frac{1-\pi/4}{4} \right]$$

$$= 2 - \pi/2$$

$$3(= \sin^2 \theta)$$

$$3 \cdot dx = 2\sin \theta (\cos \theta) d\theta$$

$$3 \cdot dx = 2\sin \theta (\cos \theta) d\theta$$

$$3 \cdot dx = 2\sin \theta (\cos \theta) d\theta$$

$$3 \cdot dx = 6\sin \theta$$

$$4 \cdot dx = 6\sin \theta$$

(b)
$$f(x) = f(a - x)$$
(i)
$$\int_{0}^{a} x f(x) dx$$
let $u = a - x \Rightarrow du = -dx$

$$x = 0 \Rightarrow u = 0$$

$$x = a - u$$

$$(i) \int_{0}^{\alpha} xf(x) dx$$

$$(i) \int_{0}^{\alpha} xf(x) dx$$

$$(i) \int_{0}^{\alpha} xf(x) dx$$

$$= \int_{0}^{\alpha} (a-u)f(a-u) \times -du$$

$$(i) \int_{0}^{\alpha} xf(x) dx = \int_{0}^{\alpha} (a-u)f(a-u) du$$

$$(i) \int_{0}^{\alpha} xf(x) dx = \int_{0}^{\alpha} af(a-u) dx - \int_{0}^{\alpha} xf(a-u) dx$$

$$= \int_{0}^{\alpha} af(x) dx - \int_{0}^{\alpha} xf(x) dx$$

$$-2\int_{0}^{a}xf(x)dx = \alpha \int_{0}^{a}f(x)dx$$

$$-1\int_{0}^{a}xf(x)dx = \frac{a}{2}\int_{0}^{a}f(x)dx$$

(ii)
$$\int_{0}^{\frac{\pi}{1}} \frac{x \sin x}{1 + \cos^{2}x} dx = \frac{\pi}{2} \int_{0}^{\frac{\pi}{1}} \frac{\sin x}{1 + \cos^{2}x} dx$$

$$= \frac{\pi}{2} \int_{1}^{-1} \frac{-du}{1 + u^{2}} = 2 \times \frac{\pi}{2} \times \int_{0}^{1} \frac{du}{1 + u^{2}} (even)$$

$$= \pi \times + av^{-1}(1) = \pi \times \pi/4 = \pi^{2}/4 \quad \text{(e.e.)}.$$

(4) (c) (i)
$$I_{n} = \int_{0}^{1} x^{n} e^{2x} dx$$

$$= \frac{1}{2} e^{2x} x^{n} \int_{0}^{1} - \int_{0}^{1} (\frac{1}{2} e^{2x}) x^{n} x^{n-1} dx$$

$$= (\frac{1}{2} e^{2} \times 1) - (c) - \frac{n}{2} \int_{0}^{1} x^{n-1} e^{2x} dx$$

$$= \frac{e^{2}}{2} - \frac{n}{2} I_{n-1}$$

$$I_{n} = \frac{1}{2} (e^{2} - nI_{n-1})$$

(ii)
$$I_{4} = \int_{0}^{1} x^{4} e^{2x} dx$$

$$I_{4} = \frac{1}{2} (e^{2} - 4I_{3})$$

$$I_{3} = \frac{1}{2} (e^{2} - 3I_{2})$$

$$I_{1} = \frac{1}{2} (e^{2} - 2I_{1})$$

$$I_{1} = \frac{1}{2} (e^{2} - I_{0})$$

$$I_{2} = \frac{1}{2} (e^{2} - I_{0})$$

$$I_{3} = \frac{1}{2} (e^{2} - I_{0})$$

$$I_{4} = \frac{1}{2} e^{2} - 4 \times \frac{1}{8} (e^{2} + 3) = \frac{1}{4} (e^{2} - 3)$$

(i)
$$y=x^2-b$$
 $y=\frac{k}{x}$

$$\therefore x^2 - b = \frac{k}{x}$$

$$-1 - x^3 - bx = R$$

$$\therefore x^3 - bx - k = 0$$

(ii) A is where they funch u. a common tangent. Hence the double root, since there must be 3 solution, so at A they are identical.

let
$$f(x) = x^3 - bx - k$$

 $f(x) = 3x^2 - b$

let x= a be the x-coord of A

$$f(\alpha)=0 \Rightarrow \alpha(\alpha^2-b)=k$$

$$\frac{1}{3} \times \left(-\frac{2b}{3}\right)^{2} = R^{2}$$

$$\frac{1}{3} \times \frac{4b^{2}}{9} = R^{2}$$

$$\frac{1}{3} \times \frac{4b^{3}}{9} = 27 R^{2}$$

$$\frac{1}{2} \cdot \frac{b}{x} \times \frac{4b^2}{x^2} = k^2$$

: x+x+ p = 0 => 2x+p=0 - (p is the x-coord of B)

$$\alpha^2 + 2\alpha\beta = -b \Rightarrow \alpha^2 + 2\alpha\beta = -12$$

$$\alpha^2\beta = -(-R) \Rightarrow \alpha^2\beta = 16$$
 - \odot

5(b) 10 R, 10 B, 10 Y
RI,..., RIO, BI,..., 810, YI,..., YIO

(i) 4 cards \Rightarrow $\binom{30}{4} = 27405$ No red card \Rightarrow $\binom{20}{4} = 4845$

solution solution

$$2.$$
 At least one red card = ${}^{30}C_4 - {}^{10}C_4 = 22560$

or
$$\binom{10}{1}\binom{20}{3} + \binom{10}{2}\binom{20}{2} + \binom{10}{3}\binom{20}{1} + \binom{10}{4}$$

- (ii) At least one Red, and at least one of each colour
 - .. RRYB, RYYB, RYBB
 u. (10)(10)(10) x3
 = 13500
 - :. Prob = $\frac{13500}{22560} = \frac{225}{376} = 59.8\%$

```
(e-x)
(6)
                 0
                                                                             (x=6)
      t=0, x=0, v=0
                                                      carrows indicating direction
                                                         of acceleration)
   ti).
                     05x53 u for some point?
                \ddot{x} = (3-x) + (6-x)^2
                    = 3-X + 36-121(+X2
                    = x^2 - 13x + 39
             BEXEG a for some Point P'
       FCV
     N.B. distance from A is x-3 But the acceleration is negative distance from B is 6-x But acceleration is positive.
              = . \quad \lambda = -(\lambda - 3) + (16 - \lambda 1)^{2}
                     = x^2 - 13x + 39
 (ii) \dot{x} = d(\frac{1}{2}v^2) = x^2 - 13x + 39
              \therefore \pm v^2 = \pm x^3 - \frac{13}{5}x^2 + 39x + C
                  v^2 = \frac{2}{3}x^3 - 13x^2 + 78x + k  (x=0, v=0)
                                                                =) 12=0
                 -\sqrt{2} = \frac{2}{3}\chi^{3} - 13\chi^{2} + 78\chi
  = \underbrace{2}_{3}(2x^{2} - 39x + 234)
(iii) V = 0 \Rightarrow \underbrace{x}_{3} = 0 \text{ or } 2x^{2} - 39x + 234 = 0
                   1 \times 1 = 0 or 1 \times 1^2 - 39 \times + 234 = 0
                                            BUT A = -351 <0
                                              = no real solution
                                     e. v=0 exapt at x=0 re. initially
(iv) \chi = 6, V^2 = \frac{6}{3} (2 \times 36 - 39 \times 6 + 234)
                                   = 2(72) = 144
                    : speed = 1V=12
```


distance from A is x-3distance from B is x-6but acceleration is towards A and B $\therefore x = -(x-3) - (x-6)^2$

$$= -x+3 - (x^2 - 12x + 36)$$

$$= -x+3 - x^2 + 12x - 36$$

$$= -x^2 + 11x - 33$$

(vi)
$$d(\frac{1}{2}v^2) = -3c^2 + 115c - 33$$

$$\frac{1}{2}\sqrt{2} = -\frac{1}{3}x^{3} + \frac{11}{2}x^{2} - 33x + 0$$

$$3.\sqrt{2} = -\frac{2}{3}x^3 + 11x^2 - 66x + 18$$
 (x=6, $\sqrt{2} = 144$)

144 = -144. + 11×36. -66×6 + R

N.B.
$$V^2 = -\frac{2}{3}x^3 + 11x^2 - 66x + 288$$

at x=11:
$$v^2 = -\frac{2}{3} \times 11^3 + 11 \times 11^2 - 66 \times 11 + 288 = 5^2/3$$

so particle is the motion at x=11

at
$$x=12$$
: $V^2 = -\frac{2}{3} \times 12^3 + 11 \times 12^2 - 66 \times 12 + 288 = -72$